Back to all publications...

Prediction of GNSS Phase Scintillations: A Machine Learning Approach

A Global Navigation Satellite System (GNSS) uses a constellation of satellites around the earth for accurate navigation, timing, and positioning. Natural phenomena like space weather introduce irregularities in the Earth’s ionosphere, disrupting the propagation of the radio signals that GNSS relies upon. Such disruptions affect both the amplitude and the phase of the propagated waves. No physics-based model currently exists to predict the time and location of these disruptions with sufficient accuracy and at relevant scales. In this paper, we focus on predicting the phase fluctuations of GNSS radio waves, known as phase scintillations. We propose a novel architecture and loss function to predict 1 hour in advance the magnitude of phase scintillations within a time window of plus-minus 5 minutes with state-of-the-art performance.


Kara Lamb, Garima Malhotra, Athanasios Vlontzos, Edward Wagstaff, Atılım Güneş Baydin, Anahita Bhiwandiwalla, Yarin Gal, Freddie Kalaitzis, Anthony Reina, Asti Bhatt
Machine Learning and the Physical Sciences Workshop (ML4PS), NeurIPS 2019
[arXiv]

Are you looking to do a PhD in machine learning? Did you do a PhD in another field and want to do a postdoc in machine learning? Would you like to visit the group?

How to apply


Contact

We are located at
Department of Computer Science, University of Oxford
Wolfson Building
Parks Road
OXFORD
OX1 3QD
UK
Twitter: @OATML_Oxford
Github: OATML
Email: oatml@cs.ox.ac.uk