Back to all publications...

Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning

We propose Radial Bayesian Neural Networks (BNNs): a variational approximate posterior for BNNs which scales well to large models while maintaining a distribution over weight-space with full support. Other scalable Bayesian deep learning methods, like MC dropout or deep ensembles, have discrete support—they assign zero probability to almost all of the weight-space. Unlike these discrete support methods, Radial BNNs’ full support makes them suitable for use as a prior for sequential inference. In addition, they solve the conceptual challenges with the a priori implausibility of weight distributions with discrete support. The Radial BNN is motivated by avoiding a sampling problem in ‘mean-field’ variational inference (MFVI) caused by the so-called ‘soap-bubble’ pathology of multivariate Gaussians. We show that, unlike MFVI, Radial BNNs are robust to hyperparameters and can be efficiently applied to a challenging real-world medical application without needing ad-hoc tweaks and intensive tuning. In fact, in this setting Radial BNNs out-perform discrete-support methods like MC dropout. Lastly, by using Radial BNNs as a theoretically principled, robust alternative to MFVI we make significant strides in a Bayesian continual learning evaluation.


Sebastian Farquhar, Michael Osborne, Yarin Gal
The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)
[arXiv]

Are you looking to do a PhD in machine learning? Did you do a PhD in another field and want to do a postdoc in machine learning? Would you like to visit the group?

How to apply


Contact

We are located at
Department of Computer Science, University of Oxford
Wolfson Building
Parks Road
OXFORD
OX1 3QD
UK
Twitter: @OATML_Oxford
Github: OATML
Email: oatml@cs.ox.ac.uk