Back to all publications...

Exploring the Limits of Synthetic Creation of Solar EUV Images via Image-to-image Translation

The Solar Dynamics Observatory (SDO), a NASA multispectral decade-long mission that has been daily producing terabytes of observational data from the Sun, has been recently used as a use case to demonstrate the potential of machine-learning methodologies and to pave the way for future deep space mission planning. In particular, the idea of using image-to-image translation to virtually produce extreme ultraviolet channels has been proposed in several recent studies, as a way to both enhance missions with fewer available channels and to alleviate the challenges due to the low downlink rate in deep space. This paper investigates the potential and the limitations of such a deep learning approach by focusing on the permutation of four channels and an encoder–decoder based architecture, with particular attention to how morphological traits and brightness of the solar surface affect the neural network predictions. In this work we want to answer the question: can synthetic images of the solar corona produced via image-to-image translation be used for scientific studies of the Sun? The analysis highlights that the neural network produces high-quality images over 3 orders of magnitude in count rate (pixel intensity) and can generally reproduce the covariance across channels within a 1% error. However, the model performance drastically diminishes in correspondence to extremely high energetic events like flares, and we argue that the reason is related to the rareness of such events posing a challenge to model training.

Valentina Salvatelli, Luiz F. G. dos Santos, Souvik Bose, Brad Neuberg, Mark C. M. Cheung, Miho Janvier, Meng Jin, Yarin Gal, Atılım Güneş Baydin
The Astrophysics Journal

Are you looking to do a PhD in machine learning? Did you do a PhD in another field and want to do a postdoc in machine learning? Would you like to visit the group?

How to apply


We are located at
Department of Computer Science, University of Oxford
Wolfson Building
Parks Road
Twitter: @OATML_Oxford
Github: OATML